流体解析ソフトウェア Advance/FrontFlow/redとCube-it・ParaViewの利用

塩谷 仁* 清野 多美子*

Application of Cube-it and ParaView for Advance/FrontFlow/red

Hitoshi Shiotani* and Tamiko Seino*

2013年よりアドバンスソフト株式会社では、メッシュ作成ツールキット Cube-it CFD の販売と、オープンソースの可視化ソフトウェア ParaView の利用サポートサービスを開始した。本稿では、これらのソフトウェアを流体解析ソフトウェア Advance/FrontFlow/red で使用する方法を紹介する。

Key word: 流体解析、プリポスト

1. はじめに

アドバンスソフト株式会社では流体解析ソフ トウェア Advance/FrontFlow/red (以下 AFFr) とプリポストプロセッサ Advance/REVOCAP を 開発し、3 次元熱流体問題に関するソリューショ ンを提供しているが、周辺ツールを拡充すること で、より使いやすい環境の構築を目指している。

ここでは、メッシュ作成と可視化機能の拡充の ため販売を開始した Cube-it と利用サポートサー ビスを開始した ParaView について紹介する。

2. メッシュ作成ツールキット Cube-it CFD

2013 年よりアドバンスソフト株式会社では、 M&T 社との業務提携により Cube-it CFD の販売 を開始した。Cube-it CFD は全自動へキサメッシ ュを目標として日々進化している、Cubit プロジ ェクトから誕生した汎用のメッシュ生成ソフト である。Cubit プロジェクトは 1990 年代初頭に Sandia National Laboratories (アメリカ合衆 国・エネルギー省管轄の研究機関)で、ロバスト な自動へキサメッシングアルゴリズムの構築を 目的として研究開発が開始された。「Cubit」とは 形状から Cube (ヘキサメッシュ)を切りだすこ とを意味している。

*アドバンスソフト株式会社 第2事業部 2nd Computational Science and Engineering Group, AdvanceSoft Corporation 本項では Cube-it CFD の特徴と Cube-it CFD で作成したメッシュを AFFr で使用する方法を、 例題を用いて紹介する。

2.1. Cube-it CFD の特徴

Cube-it CFD は、表 1 に示すインターフェイス を持ち、その機能としては形状およびメッシュの 作成・編集、境界条件の設定、およびメッシュ出 力を備えている。GUI (Graphical user interface) によるインタラクティブな操作性に加え、すべて の機能は Cube-it 独自のコマンドにより、操作内 容をジャーナルファイルとして記録し、ユーザー が編集して使用できることから、自由なパラメト リックスタディに対応している。また同時に Python スクリプトを使用しての操作も可能であ る。メッシュの作成例として図 1 にジャーナルエ ディタ (ジャーナルファイル) とメッシュ図を示 す。本コマンドを実行すれば図のような形状→メ ッシュの作成が再現できる。続いて流体メッシュ 作成時に特長となる機能を紹介する。

表 1 インターフェイス

サポート要素	四面体,六面体,三角柱,ピラミッド
	CADファイルフォーマット:ACIS, IGES, STEP
入力ファイル	Facet ファイルフォーマット: Facets, AVS, STL
フォーマット	メッシュフォーマット
	: Exdous,Patran,Ideas,Abaqus,Nastran,Fluent
山力ファイル	CADファイルフォーマット:ACIS, IGES, STEP
山川ノナイル	Facet ファイルフォーマット: Facets, AVS, STL
73-49F	メッシュフォーマット:Exdous, Fluent
プラット	Windows Linux
フォーム	WILLOWS, LILLUX

🕼 Journal Editor
File Edit Tools
#/delete(block,rotation)} #delete(block,rotation)} #block,rotation=15 #2000J200J20vF reset
#解释析領域の作時なおび移動 brick × 26 y 11 z 2 move Volume 1 × 7.5
#解析領域の分割 webcut volume 1 with cylinder radius 3.5 axis z
#角柱の定義および解析領域の分割・削除 brick × 1 y 1 z 5 subtract volume 3 from volume 2
#解析領域の分割(メッシュ用) webcut volume all with plane xplane rotate 45 about z center 0 0 0 webcut volume all with plane xplane rotate -45 about z center 0 0 0
#カット用円柱を 既存の点から生成 create curve arc three vertex 59 37 74
#解析領域を円柱で分割 webcut volume 1 with cylinder radius 7.778175 axis z
#不要な線の削除 delete curve all
#インプリントマージ inprint all imprint all merge all
#メッシュイド成 volume all size auto factor 2 mesh vol all
#解释析領域のインターフェース部の接続解除 unmerge surface 68 51 53 70
#角柱領域部の回転 #rotate Volume 2 angle (block_rotation) about Z include_merged
#インターフェー 入境界の設定 Sideset 1 surface 78 76 60 62 sideset 1 name 'Blidine='n' Sideset 2 surface 70 68 51 53 sideset 2 name 'Sliding-out'
#流体領域の設定 block 1 volume 9 7 2 5 block 2 volume 3 VROT block 2 volume all except 9 7 2 5 block 2 name 'VSTA'

図 1 ジャーナルエディタとメッシュ図

2.1.1. 境界層機能

Cube-it CFD Ver. 14.1 (2013 年リリース予定) より流体解析用メッシュ作成に適した機能とし て、境界層機能が追加される。これにより短時間 で精度良い境界層メッシュを作成することが可 能となった。図 2 は境界層メッシュを作成した例 であるが、入口と出口で径の異なる円筒形状に対 し、次の手順でメッシュを作成している。①側面 から一定厚さの境界層を作成、②入口面を Pave コマンドで非構造型の四角形要素による Suface メッシュを作成、③Sweep による押し出し機能で ヘキサ要素を作成。

図 2 境界層機能を使用したメッシュ

また Bias 機能を用いて粗密のついたメッシュ を作成する場合に推奨される手順としては、① Geometry タブでカーブの方向を揃え、②Mesh タブで Bias の設定をする。両タブ画面の切換え が容易に行えるよう、相互に切換えボタンが設け られている(図 3)。

図 3 メッシュ粗密の設定

2.1.2. 大規模メッシュの生成

Cube-it CFD の特長として、大規模メッシュの 生成スピードがあげられる。まず図 2に示すよう

な T 字管の 1/4 モデル形状を Cube-it で作成し、 テトラメッシュ生成スペックの比較テストを実 施した。本テストでは約3千万のメッシュを10 分程で作成することができた。FAQ においては、 約5億要素の作成実績(64bitメモリ128GB)が 紹介されており、コマンドベースで使用すること で、より大規模なメッシュの作成が期待できる。 ただし生成時間と使用メモリは、形状やデータフ オーマットに依存し変化する。形状データをイン ポートして使用する場合にはあらかじめできう る限り簡略化したデータを用いることが推奨さ れている。

メッシュ サイス゛	要素数	要素数 節点数		CPU Time
10.0	65,415	12,678	180MB	1.2sec
5.0	417,869	76,509	240MB	4.5sec
1.0	18,301,997	3,212,353	3GB	306sec
0.8	29 303 152	5 136 673	6GB	566sec

表 2 テトラメッシュ作成テスト結果

テストマシンスペック OS: Windows7 Pro SP1 CPU: Intel Xeon CPU E3-1220 V2 @ 3.10GHz × 2 物理メモリ: 8.00GB

メッシュサイズ10.テスト形状

図 4 テストメッシュ

2.2. Advance/FrontFlow/red のための設定

Cube-it で作成したメッシュを AFFr で使用す るためには、材料と境界名の定義を行う。図5に 示す回転角柱周りの流れ解析用モデルを例にと り、その設定手順を説明する。図 6には Cube-it で使用される名前と AFFr で定義する名前の関係 図を示す。ユーザーが設定を行わなければ、 Cube-it のデフォルトの名前で出力される。設定 後のメッシュデータは Cube-it の Fluent 形式で 出力し、.msh ファイルとして AFFr で使用する。

図 5 例題

2.2.1. 材料定義手順

Cube-it で材料を定義するためには、まず材料 ごとに Block を作成する。例題では回転系(スラ イディング領域)と静止系を別々の材料として設 定するため、2つの Block を作成する。

複数マテリアルを用いる場合、AFFr では境界 面を「interface」として扱い、各々のマテリアル に対し境界の設定を行う。Cube-it でこの境界面 の設定を行うためには、複数マテリアルの境界面 はマージせずに別々にメッシュを作成しておく。 計算精度などの観点からインターフェイス面の メッシュパターンを一致させたい場合には、 Volume がマージされた状態でメッシュを作成し た後で、切り離しを行うとよい。

引き続いて、通常は図 9 に示すように Block と CFD Media を関連付けて材料種 (FLUID or SOLID)とマテリアル名を設定する。しかしAFFr では Cube-it で定義した材料種は参照しないため、 関連付けは省略可能であり、図 10 のようにパワ ーツリー上で Block の名前を変更した場合には、 それがマテリアル名として使用される。AFFr に おいては prefflow によるプリ処理時に、材料を属 性番号で指定する。

静止領域:属性番号1 (マテリアル名:VSTA)

スライディング領域:属性番号2(マテリアル名:VROT)

図 8 Block の作成

図 9 Block とマテリアルの関連付け

図 10 Block 名の変更

2.2.2. 境界条件定義手順

Cube-it では Sideset を用いて境界を定義する。
 図 11 に例題で使用する境界の種類と境界名を示す。回転系と静止系の境界は interface になるため、それぞれの Block の境界面に Sideset を作成する。

図 12 に示す境界条件の作成を行うと、Sideset と、境界の種類および境界名が関連付けられた状 態で同時に作成される。境界名はパワーツリーで 変更することが可能である。ただしAFFrでは Cube-it で定義する境界の種類を参照しないため、 関連付けは省略しても良い。この場合は、図 13 に示すように Sideset の作成のみを行い、その名 前を変更する。AFFrではメッシュファイルに記 載された境界名を使用し、設定ファイル(fflow.ctl) で定義した境界の種類を使用する。

境界の種類→AFFrの設定ファイル(fflow.ctl)で設定

境界名→Cube-it で設定

図 11 境界の種類と境界名

図 13 Sideset の作成

3. 可視化ソフトウェア ParaView

ParaView は、Kitware 社と米国の3国立研究 所(Los Alamos 国立研究所、Sandia 国立研究所、 Livermore 国立研究所)の共同プロジェクトとし て開発がすすめられたオープンソースの可視化 ソフトウェアである。マルチプラットフォームで 利用可能で並列計算にも対応しており、可視化処 理に加えてデータ解析機能も有している。さらに、 Python スクリプトによるカスタマイズにも対応 しており、技術計算に必要と考えられるあらゆる 機能が実現されている。ParaViewの概要につい ては既報で紹介済みのため、本稿では、AFFr の 可視化ツールとして使用する際の、主要な機能を 紹介する。

3.1. ParaView 用可視化ファイルの作成

ParaView では、データ処理とレンダリングエ ンジンに可視化ツールキット VTK を利用してい るが、AFFr では可視化ファイル作成プログラム ffr2viz を用いて、結果ファイルを VTK フォーマ ットに変換することが可能であり、作成したファ イルは ParaView での表示が可能である。

AFFr の計算結果は、定常解析では result.frontflow、非定常解析では result.frontflow_#####は計算ステップ数) というファイル名で出力される。また、結果ファ イルは、シングルコアの計算では作業ディレクト リに、マルチコアの計算では作業ディレクトリ内 の並列データ用ディレクトリ hpc_#####(###### CPU 番号) に保存される。

VTK フォーマットに変換する際には、ffr2viz 実行時に出力フォーマットに関するオプション を"-rf vtk"と指定する。

3.2. ParaView による可視化・データ処理

ParaView を用いた AFFr 結果ファイルの可視 化・データ処理に関して、主なフィルターを表 3 に示す。任意の体積要素および断面上でのコンタ 一図、速度ベクトルや流線など流れ場の状態表示 など一般的に流体解析の可視化機能として要求 されるものは一通り実装されており、また、2 次 元プロットや時系列プロット、既存のデータを用 いた関数作成機能などのデータ処理機能も実装 されている。さらに、データ数値を CSV ファイ ルにエクスポート、アニメーションの作成にも対 応している。

表 3 ParaView の主なフィルター機能

分類	フィルター名	処理内容
	Clip	任意断面や、境界・パラメータ値で領域を切断
+]	Slice	任意断面の取り出し
ルット	Contour	任意パラメータ等値面の取り出し
	Threshold	任意パラメータによる閾値カット
表示	Stream Tracer	流線表示
	Glyph	ベクトル表示
	Plot Over Line	任意線におけるパラメータプロット
	Plot Over Time	時系列プロット
アータ処理	Calculator	関数作成
	Histogram	ヒストグラム作成

3.2.1. ファイルの選択

メニューバーの File→Open と選択すると図 14のダイアログ画面が開き、ParaView で扱える 可視化ファイルの一覧が表示される。ファイル名 を〇〇##.vtk(〇〇は共通の文字列で##は数字) とした場合、これら一連のファイルは〇〇..vtk と いう名称のツリー構造で表示される。ツリーを展 開し、ファイル名を選択(図 14①)すると、指 定したファイルのみが読み込まれ、ツリーのトッ プにある〇〇..vtk を選択(図 14②)すると、ツ リーに含まれるファイルー式が読み込まれる。 (アニメーションの作成を行う際には②の方法 で読み込む)

	📶 Open File: (open m	ultiple files with <ctrl> key.)</ctrl>	-	? 💌	
	Look in: I/D	ata/Red_tutrial/case6h2/	O	o 📑	
()<	My Documents Desktop Fevorite Fevorite E:	Filename Filename Filename Filename Filename Filename Filename Filename Files of type Supported Files (*xy2 *akc *h5 *wid *rst *POS* *CHK *		OK Dancel	

図 14 Open File のダイアログ画面

3.2.2. カット関連機能

カット関連の主な機能としては、任意断面で切 断した残りの体積領域を表示する Clip 機能、切断 面のみを表示する Slice 機能、選択したスカラー 量に対する等値面で切断する Contour 機能など がある。Clipの設定画面は図 16の通りで、座標 軸に垂直な面でカットする際は "** normal" の ボタンで選択し、任意の面については、Origin に 基準点の座標、Normal にカット面の法線ベクト ル成分を指定することになる。カット面は平面以 外に Box、Sphere があり、さらに、Clip 機能で は、任意のスカラー量の等値面で指定することも できる。ParaView では境界面の表示を明示した フィルターは実装されていないが、境界面に関す る情報はスカラー量として保持されており、Clip や Contour 機能を用いることで境界面のみを表 示することができる。図 17 に Clip 機能で境界面 を表示する場合の設定例を示す。また、Clip 機能 を複数回適用することで、詳細な範囲指定も可能 となる (図 18参照)。

図 15 カット機能の使用例

Clip Type	Plane
🔽 Show Plane	
Origin -0.4499999999254 0	0
Normal 0	1
<u>×</u> Normal	Reset Bounds
⊻ Normal	
Z Normal	
Camera Normal	Center on Bounds
🗖 Inside Out	

図 16 Clip の設定画面

Properties						
🗬 <u>A</u> pply	<u> R</u> eset	💢 Delete	?			
Clip Type	Sca	əlar	•			
Scalars 💿	Wall		•			
Value 1						
🔲 Inside Ou	t					

図 17 Clip 機能を用いた境界面の表示方法 (境界名 "Wall"を表示する設定)

図 18 Clip 機能を用いた境界面の表示 (図 15(b)に対して境界 "Wall"を表示)

3.2.3. 表示関連機能

流れ場の可視化に関する機能として、ベクトル

分布を表示する Glyph 機能や、流線を表示する Stream Tracer 機能が実装されている。Glyph 機 能は読み込んだ VTK ファイルにそのまま適用す るとモデル領域全体のベクトル分布が表示され るが、Clip 機能や Slice 機能と併用することで、 指定した範囲または断面上のベクトル分布を表 示することができる(図 19参照)。

図 19 速度ベクトル分布の表示例 (Slice 断面に対して表示)

Stream Tracer 機能では、図 20 のように中心座
 標と半径、個数を設定して、指定した円の範囲内
 に Seed を配置し、流線を表示することができる。
 (図 21 参照)

_⊡-Seeds ———	
Seed Type	Point Source
☑ Show Point	Center on Bounds
Point -0.449999999925494 0	0
Number of Points 300	*
Radius 0.2	
Note: Move mouse and use ' position	P' key to change point

図 20 Seed の設定画面

(Unit)

図 21 流線の表示例

なお、AFFr では、粒子の移動を Lagrange 的 に取り扱う粒子追跡機能が実装されており、

ParaView には Particle Tracer 機能が実装されているが、現時点では ParaView で表示可能な形式への出力には対応していない。

3.2.4. データ処理関連機能

ParaView では、コンターやベクトル等の可視 化処理を行うだけでなく、指定した点や線上にお ける数値データの取得や、グラフ描画も可能であ る。特定点の数値データを確認する際には Probe Location 機能を用い、データを見たい位置座標を 指定する (図 22、図 23)。指定した位置におけ る各種数値データは Information で確認できるが (図 24)、View 画面を分割し、Spreadsheet View を選択(図 25)することで、一覧表を表示する ことができる(図 26)。なお、Spreadsheet View では、Probe Location に限らず、VTK ファイル そのものを指定すれば全節点の情報が、Clip や Slice、後述の Plot Over Line に適用すれば、該 当する体積や面、線上の数値データの一覧表が表 示される。数値データは CSV 形式で出力するこ とも可能である。

図 22 Probe Location の設定画面

図 23 Probe Location による座標指定

図 24 Probe Location の Information 画面

図 25 View 画面の分割

Show	howing ProbeLocation2 🔽 Attribute: Point Data 💌 Precision: 6 🚍 🔣									
	Wall	Velo_x;Velocity	Outlet	Inlet2	Inlet1	Static_pressure	Mach_number			
0 0		50.0561 -0.0302877***	0	0	0	1.78919e+06	50.0561	997.1		

図 26 Spreadsheet View の表示

線上のプロファイルを取得する際には Plot Over Line 機能を使用し、線の両端の座標を指定 すると、図 27 のように View 画面が分割され、 各種データのプロファイルを描画したグラフが 表示される。

また、Calculator 機能によって、VTK ファイ ルに保持されているスカラー量等を用いて演算 処理を行うことも可能である。AFFr では、各種 データを SI 単位で扱っているが、温度分布を摂 氏で表示したい場合には図 28 のような計算式で 新たなスカラー量を定義すればよい。

図 27 Spreadsheet View の表示

Properties	Properties 8 ×							
đ	Apply	0 <u>R</u> ese	et 🛛 💥	Delete	?			
Attribute Mode Point Data								
🗖 Coordin	ate Result	s						
Result Array Name Celsius								
Static_tem	Static_temperature=273.15							
Clear	()	iHat	jHat	kHat			
sin	COS	tan	abs	sqrt	+			
asin	acos	atan	ceil	floor	-			
sinh	cosh	tanh	xîy	exp	*			
v1.v2	mag	norm	ln	log 10	1			
Scalars • Vectors •								
🔽 Replace	Replace invalid results							
Replaceme	nt value 🛛)						

図 28 Calculator の設定画面

3.2.5. 時系列データ処理

図 14②の手順で読み込まれた一式のファイル 群は時系列データとして扱われる。この場合、図 29 に示す VCR Controls (左) と Current Time Controls (右) の 2 つのツールバーによって表示 するフレームを指定することになる。また、時系 列データで読み込んだ場合には、コンター図やベ クトル分布図、流線図をアニメーションファイル として保存することもできる。メニューバーの File→Save Animation を選択すると、図 30 のダ イアログ画面が表示され、フレームレートや解像 度等を設定し、AVI 形式で動画ファイルが作成される。

		\triangleright			钧	Time: 6	6	*
<u>الا</u>	29)	持系	列ラ	<u> </u>	タに関するツール	レバー	_

# Animation Settings Dial	og	<u>?</u> ×
Animation Duration (sec)	0.00	* *
Frame Rate (fps)	1.00	* *
No. of Frames / timestep	1	* *
Number Of Frames	0	* *
Resolution (pixels)	1548 835	8
Stereo Mode (if applicable)	No Stereo	-
Disconnect before saving animation		
	Save Animation	Cancel

図 30 アニメーション作成のダイアログ画面

4.おわりに

メッシュ作成ツールキット Cube-it CFD およ びオープンソースの可視化ソフトウェア ParaView の AFFr への適用について紹介してき た。いずれのソフトも基本的な操作手順は本稿に 記載した通りであるが、Cube-it CFD に関しては、 AFFr に適したメッシュ作成基準の確立やサンプ ルジャーナルファイルの整備、ParaView に関し ては、粒子追跡の可視化対応や本稿では紹介しな かった Python を用いたスクリプト処理を整備し、 使いやすさを向上させていくことなどが今後の 課題と考えている。

参考文献

[1] 松原 聖ら: "商用可視化ソフトウェアの代替となるフリー可視化ソフトウェア
 ParaView Ver. 3.98", アドバンスシミュレーション vol. 15

※技術情報誌アドバンスシミュレーションは、ア ドバンスソフト株式会社 ホームページのシミュ レーション図書館から、【カラー版】がダウンロ ードできます。(ダウンロードしていただくには、 アドバンス/シミュレーションフォーラム会員登 録が必要です。)