Advance/FrontFlow/red Ver.4.1 による燃焼解析

塩谷 仁 アドバンスソフト株式会社 技術第3部

Combustion simulation using Advance/FrontFlow/red Ver. 4.1

Hitoshi Shiotani

 $3^{\rm rd}$ Technical Division in AdvanceSoft Corporation

1. はじめに

燃焼はガスタービン、ボイラなどの発電設備や 自動車用エンジンなど産業技術から火災のような 災害に至るさまざまな分野と関連の深い現象であ るが、実験で火炎の内部構造を知ることは困難で あり数値解析による現象の解明が重要となる。

本報では、Advance/FrontFlow/red で現在使用可 能な燃焼解析機能についてその概略と適用範囲に ついて紹介する。

2. 基礎方程式

燃焼流れの解析には圧縮性を考慮した混合気体 の質量保存式、運動量保存式、エネルギー保存式 及び化学種成分保存式が用いられる。各方程式を 以下に示す。

[質量保存式]

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0 \tag{1}$$

[運動量保存式]

$$\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left\{ \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right\} + \rho g_i$$
(2)

*アドバンスソフト株式会社 技術第3部 AdvanceSoft Corporation [エネルギー保存式]

$$\frac{\partial \rho h}{\partial t} + \frac{\partial \rho h u_j}{\partial x_j} = -\frac{\partial p}{\partial t} + u_j \frac{\partial p}{\partial x_j} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_i}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\lambda \frac{\partial T}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\rho \sum_s h_s D_s \frac{\partial Y_s}{\partial x_j} \right) + Q$$
(3)

[化学種成分保存式]

$$\frac{\partial \rho Y_2}{\partial t} + \frac{\partial \rho Y_s u_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D_s \frac{\partial Y_2}{\partial x_j} \right) + \dot{w}_s$$
(4)

ここで、*w_s*は化学反応による化学種成分の生成・ 消滅速度を表す生成項である。

2.1. 化学反応モデル

燃焼流れの解析では、火炎内で起こる化学反応 に基づき化学種の生成・消滅速度を求めることが 必要となる。実際の燃焼反応では反応物から生成 物に変わる過程で数多くの中間生成物や化学反応 があり、これらを忠実に考慮することで現象を再 現できるが、実用的には計算負荷の面で困難な場 合が多く、火炎構造や解析対象に応じた化学反応 モデルが開発されている。ここでは、 Advance/FrontFlow/red に実装されている化学反応 モデルについて、その概要を紹介する。

2.1.1. 素反応モデル

燃焼反応では、反応物が生成物に変化する過程 で中間生成物や連鎖反応が存在し、多数の化学反 応が同時進行している。これらの個々の反応を素 反応と呼び、実際の化学反応は数多くの素反応群 を用いて表現されるが、素反応モデルでは、各素 反応における反応速度を算出し、化学種の生成・ 消滅速度を求める。

素反応は化学種sをmsで表すと次式で表わされる。

 $\sum_{s=1}^{N_s} \mathbf{v}_{s,r}^f m_s \rightarrow \sum_{s=1}^{N_s} \mathbf{v}_{s,r}^b m_s$ (5) ここで、 $\mathbf{v}_{s,r}^f$ 、 $\mathbf{v}_{s,r}^b$ はs種の反応物および生成物の 量論係数、 N_s は関与する化学種成分の総数である。 各素反応における反応速度 $R_{f,r}$ は式(6)で与えられ る。 $k_{f,r}$ は反応速度定数で一般に式(7)で与えられる。 $A_{f,r}T^{a_{f,r}}$ は頻度因子、 $E_{f,r}$ は活性化エネルギー、 R_0 は 一般気体定数で $A_{f,r}$ 、 $a_{f,r}$ 、 $E_{f,r}$ が素反応毎に必要な パラメータとなる。

$$R_{f,r} = k_{f,r} \prod \left[X_s \right]_{s,r}^{s'}$$
(6)

$$k_{f,r} = A_{f,r} T^{\alpha_{f,r}} \exp\left(-\frac{E_{f,r}}{R_0 T}\right)$$
(7)

また、一般に化学反応は前述の正反応と、それに 逆向きに進行する逆反応とが存在する。逆反応に ついての反応速度及び反応速度定数は正反応と同 様に次式で表わされる。

$$R_{b,r} = k_{b,r} \prod \left[X_s \right]_{s,r}^{v_{b,r}^b}$$
(8)

$$k_{b,r} = A_{b,r} T^{\alpha_{b,r}} \exp\left(-\frac{E_{b,r}}{R_0 T}\right)$$
(9)

ただし、逆反応の反応速度定数 k_{br} については、 正反応との化学平衡の関係から以下の式が成り立 ち、逆反応に関するパラメータが与えられていな い場合はこの関係式より算出される。

$$\frac{k_{f,r}}{k_{b,r}} = K_c \tag{10}$$

ここで K_c はモル濃度を用いた場合の平衡定数で 熱力学的な計算により求められる。

以上の式から、素反応モデルによる各化学種成 分の生成・消滅速度は次式で与えられる。

$$\dot{w}_{s} = M_{s} \sum_{r=1}^{M} \left(v_{s,r}^{b} - v_{s,r}^{f} \right) \left(R_{f,r} - R_{b,r} \right)$$
(11)

2.1.2. 総括反応モデル

燃焼反応における詳細な反応機構は前述の素反応によって表現されるが、これら素反応に対し、 途中経過とは無関係に反応物と生成物の量論関係 を示す反応を総括反応と呼ぶ。

総括反応は一般的に

$$\sum_{s=1}^{N_s} \mathbf{v}_s^r \mathbf{m}_s \to \sum_{s=1}^{N_s} \mathbf{v}_s^p \mathbf{m}_s \tag{12}$$

で表わされ、その反応速度および反応速度定数は 次式で与えられる。

$$R_{\nu} = k_{\nu} \prod \left[X_s \right]^{C_s}$$
(13)

$$k_{v} = AT^{\alpha}p^{\beta}\exp\left(-\frac{E}{R_{0}T}\right)$$
(14)

総括反応モデルを使用する際には A、 α 、 β 、E が 必要なパラメータとなる。

また、総括モデルによる各化学種成分の生成・消 滅速度は次式で与えられる。

$$\dot{w}_s = M_s \left(\mathbf{v}_s^p - \mathbf{v}_s^r \right) R_v \tag{15}$$

2.1.3. 渦消散モデル

拡散火炎では燃料と酸化剤(空気)が別々に供 給されるため、化学反応は反応速度のみではなく、 燃料と空気の混合速度(拡散速度)にも影響され る。この時、化学反応は乱流混合や乱流熱拡散に 比べ十分早い速度で進行するため、混合さえすれ ば反応は瞬時に起こると仮定できる。

そこで、燃料の渦と酸化剤の渦が衝突し、両者 が崩壊して分子レベルの混合に至る過程で燃焼反 応が進行すると考えると、反応速度は大きな乱れ の渦が微小な渦に崩壊する速度、すなわち乱れエ ネルギーの減衰速度に比例すると考える。この考 えによって時間平均反応率を与えるモデルは渦崩 壊モデルと呼ばれるが、さらに、燃料、酸素、燃 焼ガスの渦塊が崩壊してゆく過程での燃焼反応は 三者のうち最も少ないものに規制されると考える モデルが Magnussen の渦消散モデル⁽¹⁾である。 このモデルでは化学反応式を

$$\nu_f m_f + \nu_o m_o \rightarrow \sum_{s \neq f, o} \nu_s m_s$$
 (16)

とし、燃料の平均反応速度を

$$\left|\overline{\dot{w}_{f}}\right| = C_{RI}\left(\frac{\rho\varepsilon}{k}\right) \min\left(Y_{f}, \frac{Y_{o}}{r}, C_{R2}\frac{Y_{p}}{1+r}\right)$$
(17)

で与える。ここで、 C_{RI} 、 C_{R2} はモデル定数で C_{RI} =4.0、 C_{R2} =0.5 などが推奨値とされる。また、酸化剤およ び生成物の反応速度は以下の式により求められる。

$$\overline{\dot{w}} = \frac{\left| \overline{\dot{w}_f} \right|}{M_f v_f} \tag{18}$$

$$\overline{\dot{w}_o} = -M_o v_o \overline{\dot{w}}$$
(19)

$$\overline{\dot{w}_p} = M_p v_p \overline{\dot{w}}$$
(20)

2.1.4. Flamelet モデル

実際の燃焼器等で見られる複雑な乱流火炎の構 造は流れ場の非定常解析と素反応モデルを用いた 詳細な反応計算を行うことにより解析することが 可能であるが、いずれも計算負荷が大きい手法で あり、実用レベルでの適用は困難である。

ただし、乱流燃焼場における化学反応の時間ス ケールに比べ乱流場の時間スケールが十分大きい 場合、乱流場の及ぼす影響は反応帯内部の構造に は及ばないと考えられる。このとき、乱流火炎は 微視的に見れば、層流火炎と同等の構造と考えら れ、層流火炎の集合体とみなすことができる。こ のような考え方は flamelet 概念と呼ばれ、火炎内 部構造は乱流場や火炎位置の変化と独立に決定す ることが可能となり、また、火炎内部構造は層流 火炎によって表現できる。

この flamelet 概念に基づき、火炎位置の変化は 火炎面を表現できるスカラ量の輸送式を解くこと で決定し、火炎内部の詳細構造は代表的な層流火 炎のデータを基に構築したデータベースによって 表現するモデルを flamelet モデルと呼ぶ。

火炎面を表現するスカラ量について、一般に拡

散火炎では燃料と酸化剤が量論混合比の状態で混 合している位置で形成されるため、以下の式で定 義される混合分率ξを用いることができる。

$$\xi = \frac{Z_{\beta} - Z_{\beta,2}}{Z_{\beta,1} - Z_{\beta,2}}$$
(21)

ここで、 Z_{β} は元素 β の質量分率で添え字の1は 燃料、添え字の2は酸化剤を示す。なお、このス カラ量はエンタルピが混合していない燃料側と酸 化剤側でそれぞれ一定値の場合、

$$\xi = \frac{h - h_2}{h_1 - h_2}$$
(22)

と書くこともでき、エンタルピを代表すること ができる量であることがわかる。

従って、化学種成分保存式およびエネルギー保 存式に代わり、以下に示す混合分率 ξ に関する輸 送方程式を解くことで火炎面位置が決定される。

$$\frac{\partial \tilde{\rho} \tilde{\xi}}{\partial t} + \frac{\partial \tilde{\rho} \tilde{\xi} \tilde{u}_j}{\partial x_j} = \frac{\partial}{\partial x_j} \left\{ \left(\Gamma + \frac{\mu_{SGS}}{Sc_{SGS}} \right) \frac{\partial \tilde{\xi}}{\partial x_j} \right\}$$
(23)

ただし、本モデルについては以下の仮定のもと に成り立つことに注意が必要である。

①流れ場にあるすべての化学種、元素の拡散係数 は等しい

②温度と化学種の拡散速度は等しい

③低マッハ数流れで熱力学的圧力が一定

④エンタルピと混合分率の境界条件は相似

⑤領域内での輻射や壁面での伝熱などは無視する

一方、予混合火炎に対しては、火炎面位置を表 すスカラ量 G を定義し、このスカラ量に関する輸 送方程式 (G 方程式) を解くモデルを用いる手法 が考案されている⁽²⁾。G 方程式は式(24)で表わされ、 $G=G_0$ の等値面を火炎面とすると、 $G<G_0$ が未燃領 域、 $G>G_0$ が既燃領域と定義される。予混合火炎 において火炎面の輸送特性を表す物理量は燃焼速 度であり、燃焼速度を式(25)から求めて G 方程式 を解くことで火炎面位置が決定される。

$$\frac{\partial \overline{\rho} \widetilde{G}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{G} \widetilde{u}_{j}}{\partial x_{j}} = \overline{\rho_{u} s_{T}} \left| \nabla \widetilde{G} \right| + \frac{\mu_{SGS}}{\sigma_{G}} \frac{\partial^{2} \widetilde{G}}{\partial x_{j}^{2}}$$
(24)

$$\frac{s_T}{s_L} = \exp\left(\frac{{u'}^2}{s_T^2}\right), \quad u' \approx \sqrt{2k} \approx C_{st} \Delta \left|\widetilde{S}\right|$$
(25)

flamelet モデルでは、流れ場の解析中に反応計算 は行わない代わりに、解析条件に対応した flamelet データベースを作成することが必要となる。混合 分率に対しては、温度、化学種濃度、密度に関す るデータベースが必要となり、これらは化学平衡 計算のデータから作成される。また、G に対して は層流燃焼速度に関するデータベースが必要とな るが、こちらは一次元予混合火炎のデータから作 成される。なお、一般に flamelet モデルでは上記 の項目に対するデータベースのテーブルを作成す ることが多いが AFFr では各項目に対して最大 23 次の多項式で与えている。

3. 各燃焼モデルの選定方法

Advance/FrontFlow/red では前述の4種類の燃焼 モデルが組み込まれているが、それぞれに適用条 件が異なる。以下にモデルの選定方法と各モデル を使用する際の注意点を簡単にまとめる。

①層流計算または非定常乱流解析で非定常燃焼 を考慮する場合

AFFr に実装されたモデルのうち、反応速度を考 慮したものは素反応モデルと総括反応モデルであ り、有限な反応速度を考慮して非定常燃焼を評価 する際にはいずれかを使用することとなる。

素反応モデルは実際の化学反応を詳細に取り扱 うため、生成・消滅量の予測精度は高く、エンジ ン燃焼に見られるような低温酸化反応や自着火等 の現象も再現が可能となる。ただし、燃料が水素 の場合には化学種が 10 成分程度で素反応も 20 程 度と比較的少ないが、炭化水素が燃料の場合には 成分数、素反応数とも大幅に増加する。例えばメ タンの反応スキームとして広く使用されている GRI-Mech3.0⁽³⁾は化学種 53 成分、反応数 325 であ り、これを実燃焼器サイズの解析に適用するには 計算負荷の面で困難である。素反応スキームは文 献やインターネット上で公開されているもの⁽⁴⁾も あるが、高級炭化水素等についてはまだその反応 機構が十分に解明されていないものも少なくない。

また、素反応モデルのような反応速度を考慮し たモデルを使用する際には時間刻みの設定に注意 が必要となる。反応計算の問題の一つが stiffness であるが、流体計算と比べて反応計算は時間スケ ールが非常に短いうえ、非線型性が強いため適切 な時間刻みを設定しないと計算が破綻する。AFFr では Ver. 4.0 以降、OSM (Operator splitting method) が実装され、stiffness への対策が大幅に改善され た。ただし、図1に示す通り燃料種によって反応 時の温度変化が大きく異なり、メタンのような急 激な温度変化が起こる場合には時間刻みの設定に 細心の注意が必要となる。

総括反応モデルは考慮する成分が反応物と生成 物のみであり、反応式も一段しかないため計算負 荷は素反応モデルに比べて小さく、火炎構造を予 測する場合等に対して有効な手法と考えられる。

ただし、CO のような中間生成物の挙動を知る ことはできず、また、完全燃焼と考えるため、実 際の火炎に比べて温度が高く計算されること等に ついて注意が必要である。

図1 0次元素反応解析による温度履歴(左:水素-空気燃焼、右:メタン-空気燃焼)

このような一段の総括反応で見られる欠点を補 う方法として、中間生成物の中で主要な成分とな る CO や H2 が生じる化学反応を加えて数段の化 学反応を考慮する多段反応モデルがある。例えば、 炭化水素と酸素の反応における生成物を H2、CO として以下の化学反応式

$$C_n H_m + \frac{n}{2}O_2 \rightarrow \frac{m}{2}H_2 + nCO$$
⁽²⁶⁾

を考え、さらに H2、CO から H2O、CO2 への化学 反応を合わせて化学反応計算を行うモデルである。 また、Paczko らのモデル⁽⁵⁾や Jones らのモデル⁽⁶⁾ のような4段の反応モデルなども考案されている。 AFFr ではモデルの選択項目に多段反応は含まれ ないが、総括反応モデルを選択し、多段反応モデ ルの反応式を設定することで使用は可能である。

②RANS モデルを使用する場合

乱流モデルとしてRANSモデルを選択した場合、 化学反応モデルとしては渦消散モデルを使用する。 このモデルは燃料と酸化剤の混合だけで化学反応 の有無を判定するため化学反応式を考慮する必要 もなく、反応計算に関する負荷は小さい。従って、 RANSモデルと併用して平均的な燃焼場の解析に 対して適したモデルといえる。

具体的な応用例としては、防護服の耐熱性能評価のための燃焼解析がある。本解析では比較的長い時間スケールで火炎にさらされていることから平均的な温度場が問題となり、RANSモデルと渦消散モデルによる解析が妥当な手法といえる。

なお、RANS モデル使用時の化学反応モデルと して、素反応モデル等も機能的には選択すること は可能であるが、基本的に温度や濃度の平均値を 使用した反応計算は適切な結果が得られない。例 えば Zeldovich 機構で生成される NO は 1,800[K] 以上で急激に排出量が増加する傾向があり、図 2 のような温度履歴を示す乱流火炎においては NO が生成される時間帯が存在しているが、平均温度 が 1,600[K]であったとすると、この温度ではほと んど生成されないという結果になる。

図2 変動波形と平均温度のイメージ

現在の AFFr では RANS モデルに対し、上記の 点や有限反応速度を考慮できない点が課題として 残っており、EDC (Eddy dissipation concept) や PDF

(Probability Density Function) モデルの導入を今後の開発項目と考えている。

③LES で定常燃焼を扱う場合

LESによる高精度な乱流解析がAFFrの特徴で あり、ガスタービンなど複雑な構造の乱流火炎に ついて、その詳細な火炎構造の解析を行う場合に 用いる反応モデルとして flamelet モデルを実装し ている。flamelet モデルでは火炎面位置を流れ場 の解析と同等の解像度で決定されるため、火炎内 の渦なども捉えることが可能であり、中間生成物 を考慮した系で flamelet データベースを作成する ことで温度分布や濃度分布等の火炎構造について も高精度で予測することが可能である。また、開 発当初の flamelet モデルは低マッハ数近似が適用 できる流れ場であることを前提としていたが、Ver. 4.0 以降では圧縮性流れ向けに、エネルギー保存式 を同時に解く機能も実装されている。

4.まとめ

本報では、Advance/FrontFlow/red の燃焼解析機 能について概略を紹介した。実機の複雑な火炎構 造についてはいまだ十分に現象が解明されていな い点も多く、LES との組み合わせによる非定常現 象の解析が今後重要度を増すと考えている。

なお、現在の Flamelet モデルは定常燃焼を対象 とし、また、輻射等の放熱は考慮できないが、こ れらに適用しうるようモデルの拡張を行うことが 今後の課題として挙げられる。さらに、有限反応 速度を考慮した反応モデルについても現在新しい モデルの研究が進められており、これらのモデル の導入も検討したいと考えている。

参考文献

- Magnussen, B. F. and Hjertager, H., 16th Symp, (Int.) on Combustion,(1976), 719.
- Müller, C. M., Breibach, H. and Peters, N.,
 Partially Premixed Turbulent Flame Propagation in Jet Flames, 25th Symp. of Combustion,(1994), pp.1099-1106
- (3) http://www.me.berkeley.edu/gri-mech/version30/t ext30.html
- (4) https://www-pls.llnl.gov/?url=science_and_techn ology-chemistry-combustion-dme
- (5) Paczko, G., Lefdai, F. M. and Peters, N., 21st Symp. (Int.) on Combustion,(1986), p.739
- (6) Jones, W. P., and Lindstedt, R. P., Combustion and Flame, 73(1988), 233