渦粘性モデル
うずねんせいもでる
説明
渦粘性モデルは、乱流によって生じる小さな渦による運動量交換の効果を、分子粘性に似た「見かけの粘性(渦動粘性)」で表現する乱流モデルの一種である。レイノルズ平均 (RANS) の手法では、乱流によるレイノルズ応力 – ρ u’i u’_j が出現するが、渦粘性モデルではこの応力を速度勾配に比例させて閉じる(ブシネスク仮定)。すなわち、- ρ u’_i u’_j = μ_t (∂Ū_i/∂x_j + ∂Ū_j/∂x_i) – (2/3) ρ k δ_ij という関係を仮定し、μ_t = ρ Cμ (k²/ε) などのモデル式で渦動粘性係数 μ_t を求める。k は乱流運動エネルギー、ε はその消散率である。この考え方に基づくモデルには k-εモデルや k-ωモデル、Spalart–Allmarasモデルなどが含まれる。